拨打热线:0510-86991298联系人:陶先生
当前位置: 首页 >资讯>资讯列表

“纳米画笔”勾勒未来光电子器件

放大字体  缩小字体    发布日期:2020-04-21  来源:  

  如今人们的生活节奏在加快,对电子设备的要求也越来越高。各种新款电子设备都在变着法子表明自己功能更强大、体型更轻薄。然而,电子设备的功能越丰富、性能越强大,意味着这些设备单位体积中容纳的电子元件数目越多;体型越小意味着这些电子元件功能单元的体积越来越小。 

  就像我们每天都使用的手机,它的中央处理器(CPU)中包含了数十亿个晶体管单元;手机相机成像芯片可以达到几千万甚至上亿像素,里面的感光灵敏元达到了上亿数目;手机的存储容量也已达到几百GB,甚至TB,同样包含了数亿计的存储功能单元。
  未来,需要在更小的面积集成更多的电子元件。针对这种需求,厚度仅有0.3至几纳米(头发丝直径几万分之一)的低维材料应运而生。这类材料可以比作超薄的纸张,只是比纸薄很多,可以用于制备纳米级别厚度的电子器件。从材料到器件,现有的制备工艺需要经过复杂的工艺过程,这对快速筛选适合用于制备电子器件的低维材料极为不利。
 
  近日,中国科学院上海技术物理研究所科研人员研发出一种简单的制备低维半导体器件的方法——用“纳米画笔”勾勒未来光电子器件。由于二维材料如同薄薄的一张纸,它的性质很容易受到环境影响。利用这一特性,研究人员在二维材料表面覆盖一层铁电薄膜,使用纳米探针施加电压在铁电材料表面扫描,通过改变对应位置铁电材料的性质来实现对二维材料性质的精准操控。当设计好器件功能后,科研人员只需发挥想象,使用纳米探针“画笔”在铁电薄膜“画布”上画出各种各样的电子器件图案,利用铁电薄膜对低维半导体材料物理性质的影响,就能制成所需的器件。
 
  实际实验操作中,“画笔”是原子力显微镜的纳米探针,它的作用就相当于传统晶体管的栅电极,可以用来加正电压或负电压。但不同于传统栅电极,原子力显微镜的针尖是可以任意移动的,如同一支“行走的画笔”,在水平空间上可以精确“画出”纳米尺度的器件。在这个过程中,研究人员通过控制加在针尖上电压的正负性,就能轻易构建各种电子和光子器件,如存储器、光探测器、光伏电池等。
 
  下图是一张用探针针尖写出来的心形图案,充分体现了图形编辑的任意性。而且,一个器件在写好之后,用针尖重新加不同的电压进行扫描,还能写成新的功能器件,就像在纸上写字然后用橡皮擦干净再重新写上一样,即同一个器件可以反复利用、实现不同功能。就像一个机器人,刷新一下控制程序,就能做不同的事情。
 
  研究人员还进一步将这种探针扫描技术应用于准非易失性存储器。准非易失性存储器是指同时满足写入数据速度较快,保存数据的时间较长的一类存储器。发展这类存储技术很有意义,如它可以在我们关闭计算机或者突然性、意外性关闭计算机的时候延长数据的保存时间。
 
  此外,这种器件制备技术可用于设计“电写入,光读出”的存储器,我们日常使用的光盘就是典型的“光读出”的存储媒介。由于低维半导体载流子类型在针尖扫描电场作用下会发生改变,导致其发光强度也会出现明显变化。因此结合扫描图形任意编辑的特点,科研人员就可以设计出周期性变化的阵列。
 
  这些阵列图形的每个区域都经过针尖去控制它的载流子类型,进而控制低维材料的发光强度,然后通过一个相机拍照就能直接获取一张荧光强度照片。每一个存储单元的信息都在这张照片里“一目了然”,暗的单元可以用来代表存储态中的“0”,亮的单元可以用来表示“1” ,类似于一种新型存储“光盘”。
 
  科研人员可以简单直接地通过拍荧光照片的方式同时获取每个存储单元的信息。运用该技术,若用电压读出的方式,理论上的存储密度可以达到几个T-Byte/in2。
 
  该研究由上海技物所与复旦大学、华东师范大学、南京大学,中科院微电子研究所等课题组合作完成。1月24日,研究成果以Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains为题,发表在《自然-电子学》上。

 
 
 
免责声明:
本网站部分内容来源于合作媒体、企业机构、网友提供和互联网的公开资料等,仅供参考。本网站对站内所有资讯的内容、观点保持中立,不对内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如果有侵权等问题,请及时联系我们,我们将在收到通知后第一时间妥善处理该部分内容。
 

扫扫二维码用手机查看本资讯新闻"www.chinasinet.cn",每日获得科学仪器设备前沿资讯,热点产品深度分析!
 

 
 
推荐图文
推荐资讯
点击排行